Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add filters

Database
Language
Document Type
Year range
1.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.02.01.429219

ABSTRACT

The ongoing global pandemic of Coronavirus Disease 2019 (COVID-19) calls for an urgent development of effective and safe prophylactic and therapeutic measures. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) glycoprotein is a major immunogenic and protective protein, and plays a crucial role in viral pathogenesis. In this study, we successfully constructed a synthetic codon-optimized DNA-based vaccine as a countermeasure against SARS-CoV-2; denoted as VIU-1005. The design was based on the synthesis of codon-optimized coding sequence for optimal mammalian expression of a consensus full-length S glycoprotein. The successful construction of the vaccine was confirmed by restriction digestion and sequencing, and the protein expression of the S protein was confirmed by western blot and immunofluorescence staining in mammalian cells. The immunogenicity of the vaccine was tested in two mouse models (BALB/c and C57BL/6J). Th1-skewed systemic S-specific IgG antibodies and neutralizing antibodies (nAbs) were significantly induced in both models four weeks post three injections with 100 g of the VIU-1005 vaccine via intramuscular needle injection but not intradermal or subcutaneous routes. Importantly, such immunization induced long-lasting IgG response in mice that lasted for at least 6 months. Interestingly, using a needle-free system, we showed an enhanced immunogenicity of VIU-1005 in which lower doses such as 25-50 g or less number of doses were able to elicit significantly high levels of Th1-biased systemic S-specific IgG antibodies and nAbs via intramuscular immunization compared to needle immunization. Compared to the intradermal needle injection which failed to induce any significant immune response, intradermal needle-free immunization elicited robust Th1-biased humoral response similar to that observed with intramuscular immunization. Furthermore, immunization with VIU-1005 induced potent S-specific cellular response as demonstrated by the significantly high levels of IFN-{gamma}, TNF and IL-2 cytokines production in memory CD8+ and CD4+ T cells in BALB/c mice. Together, our results demonstrate that the synthetic VIU-1005 candidate DNA vaccine is highly immunogenic and capable of inducing long-lasting and Th1-skewed immune response in mice. Furthermore, we show that the use of needle-free system could enhance the immunogenicity and minimize doses needed to induce protective immunity in mice, supporting further preclinical and clinical testing of this candidate vaccine.


Subject(s)
Severe Acute Respiratory Syndrome , COVID-19
2.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.01.31.426979

ABSTRACT

BACKGROUND: There has been considerable speculation regarding the potential of PVP-I nasal disinfection as an adjunct to other countermeasures during the ongoing SARS-CoV-2 pandemic. Nasodine is a commercial formulation of 0.5% PVP-I that has been evaluated for safety and efficacy in human trials as a treatment for the common cold, including a Phase III trial (ANZCTR: ACTRN12619000764134). This study presents the first report of the in vitro efficacy of this formulation against SARS-CoV-2. METHODS: We conducted in vitro experiments to determine if the PVP-I formulation inactivated SARS-CoV-2 using two independent assays and virus isolates, and incorporating both PCR-based detection and cell culture methods to assess residual virus after exposure to the formulation. RESULTS: Based on cell culture results, the PVP-I formulation was found to rapidly inactivate SARS-CoV-2 isolates in vitro in short timeframes (15 seconds to 15 minutes) consistent with the minimum and maximum potential residence time in the nose. The Nasodine formula was found to be more effective than 0.5% PVP-I in saline. Importantly, it was found that the formulation inactivated culturable virus but had no effect on PCR-detectable viral RNA. CONCLUSIONS: The PVP-I formulation eliminated the viability of SARS-CoV-2 virus with short exposure times consistent with nasal use. PCR alone may not be adequate for viral quantification in nasal PVP-I studies; future studies should incorporate cell culture to assess viral viability. Nasal disinfection with PVP-I may be a useful intervention for newly-diagnosed COVID-19 patients to reduce transmission risk and disease progression to the lower respiratory tract.


Subject(s)
COVID-19
3.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.02.01.428871

ABSTRACT

SARS-CoV-2 enters host cells through its viral spike protein binding to angiotensin-converting enzyme 2 (ACE2) receptors on the host cells. Here we show functionalized nanoparticles, termed "Nanotraps", completely inhibited SARS-CoV-2 infection by blocking the interaction between the spike protein of SARS-CoV-2 and the ACE2 of host cells. The liposomal-based Nanotrap surfaces were functionalized with either recombinant ACE2 proteins or anti-SARS-CoV-2 neutralizing antibodies and phagocytosis-specific phosphatidylserines. The Nanotraps effectively captured SARS-CoV-2 and completely blocked SARS-CoV-2 infection to ACE2-expressing human cell lines and primary lung cells; the phosphatidylserine triggered subsequent phagocytosis of the virus-bound, biodegradable Nanotraps by macrophages, leading to the clearance of pseudotyped and authentic virus in vitro. Furthermore, the Nanotraps demonstrated excellent biosafety profile in vitro and in vivo. Finally, the Nanotraps inhibited pseudotyped SARS-CoV-2 infection in live human lungs in an ex vivo lung perfusion system. In summary, Nanotraps represent a new nanomedicine for the inhibition of SARS-CoV-2 infection.


Subject(s)
COVID-19
4.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.02.01.429176

ABSTRACT

Small linear motif targeting protein interacting domains called PDZ have been identified at the C-terminus of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) proteins E, 3a, and N. Using a high-throughput approach of affinity-profiling against the full human PDZome, we identified sixteen human PDZ binders of SARS-CoV-2 proteins E, 3A and N showing significant interactions with dissociation constants values ranging from 3 M to 82 M. Six of them (TJP1, PTPN13, HTRA1, PARD3, MLLT4, LNX2) are also recognized by SARS-CoV while three (NHERF1, MAST2, RADIL) are specific to SARS-CoV-2 E protein. Most of these SARS-CoV-2 protein partners are involved in cellular junctions/polarity and could be also linked to evasion mechanisms of the immune responses during viral infection. Seven of the PDZ-containing proteins among binders of the SARS-CoV-2 proteins E, 3a or N affect significantly viral replication under knock-down gene expression in infected cells. This PDZ profiling identifying human proteins potentially targeted by SARS-CoV-2 can help to understand the multifactorial severity of COVID19 and to conceive effective anti-coronaviral agents for therapeutic purposes.


Subject(s)
Coronavirus Infections , COVID-19 , Virus Diseases
5.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.11.30.404624

ABSTRACT

The outbreak of 2019 coronavirus disease (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has resulted in a global pandemic. Despite intensive research including several clinical trials, currently there are no completely safe or effective therapeutics to cure the disease. Here we report a strategy incorporating neutralizing antibodies conjugated on the surface of a photothermal nanoparticle to actively capture and inactivate SARS-CoV-2. The photothermal nanoparticle is comprised of a semiconducting polymer core and a biocompatible polyethylene glycol surface decorated with neutralizing antibodies. Such nanoparticles displayed efficient capture of SARS-CoV-2 pseudoviruses, excellent photothermal effect, and complete inhibition of viral entry into ACE2-expressing host cells via simultaneous blocking and inactivating of the virus. This photothermal nanoparticle is a flexible platform that can be readily adapted to other SARS-CoV-2 antibodies and extended to novel therapeutic proteins, thus providing a broad range of protection against multiple strains of SARS-CoV-2.


Subject(s)
Coronavirus Infections , COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL